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ABSTRACT

A method of phase comparison time delay estimation using large
time-bandwidth product signals is presented. This method compares the
phases of the matched filters for each channel, and it is shown that for
signals with symmetric power spectra, a meaningful estimate of time delay
can be extracted from this phase information and knowledge of the carrier
frequency of the signal.

The estimator is evaluated while operating in white Gaussian noise
which is in general correlated between channels, and curves are given for

the density function, mean, and variance of the estimator for various

noise assumptions. The estimator is shown to take advantage of the
processing gain of large time-bandwidth product signals to reduce the

variance of the time delay estimate.
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CHAPTER 1

INTRODUCTION

The problem of time delay estimation has received much attention in
the literaturel=6, 1In its simplest terms, the problem is to estimate
the time difference of arrival of similar signals in two different
channels. In general, the literature can be divided into two distinct
categories passive and echo location.

In the passive mode, the receiver "listens™ to a source in each of !!Eﬁ
two receiver channels, and estimates the time difference between the two .E:~
channels. In this case, very little may be known about the form of the
signal. 1In echo location, a signal is transmitted in the channels, and
the receiver "listens” for reflectionms in the channel. Here the signal

form is known to be a (possibly distorted) time delayed replica of the

transmitted signal, and the task is to measure the difference of the
time delays in the channels.

In each of these modes of operation there are two common methods
used to estimate the time delay: cross-correlation methods, and phase
comparison methods. The first of these methods performs a cross-
correlation of the two received signals, selecting as the estimate of
the time delay that value which maximizes the magnitude of the cross-
correlation.

In the phase comparison method, the analytic signal from one
channel is conjugated and multiplied by the signal from the other

channel and the phase of the resultant product is averaged over the time

2t e L T P N ) . - . ..
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duration of the signal. 1In order to assign a meaningful estimate of the
time delay from the phase information, the signal must be assumed
narrowband.

In the literature cited above, these estimators and variants
thereof have been extensively analyzed under various hypotheses.

This thesis presents a method of time delay estimation which was
originally developed by Ricker/. This method 1is inherently an echo
location estimator of time delay which uses a comparison of the phase of
the matched filter for each channel to estimate the delay. It will be
seen that, under the proper assumptions, this estimator is capable of
using large time—bandwidth product signals and still giving a meaningful
estimate of the time delay from the phase information.

Other advantages of this method include the fact that it handles
Doppler-shifted channels with ease, and that with proper signal design,
it can isolate multiple scatterers in the channels and estimate the time
difference for each scatterer. With this estimator, one may utilize
signals with large time-bandwidth products that resolve well both in
time and in frequency so that one can simultaneously estimate the total
propagation delay, the time stretch (Doppler), and the time difference
of arrival.

The next chapter will present the receiver structure and the
estimation procedure. Chapters 3, 4 and 5 will evaluate the perfor-
mance of the receiver cuperating in additive white Gaussian noise, and

Chapter 6 will summarize and suggest further work in this area,
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CHAPTER 2

RECEIVER STRUCTURE

This chapter will discuss the method in which the received signals
are processed, and will present notation and assumptions that will be
used in the chapters that follow. The receiver structure is shown in

Figure 2-1. It is assumed that a signal f(t)ejwot, was transmitted

AT T T T T T

-
LT

and that the received signals, rl(ti) and rz(ti), are samples of two
time-delayed, time-stretched replicas of the transmitted signal plus
additive noise. The function f(t) is known as the complex envelope of
the signal, and wy is equal to 2nfo, where fo is the carrier frequency.

The received signals, r, and r, can be written as follows

jw s(ti- 11)

rl(ti) = /f; f[s(ti-rl)]e ° + nl(ti)

90257 T ey

r(t,) = VE f[s(ti-rz)]e
It is assumed both signals are of the same energy, and that the complex

envelope is normalized such that

N

)

i=]

f[s(ti-tk)]lz =1 k=1,2 (2-1)

so that in the absence of noise, the energy of each sampled signal is Eo.
The time-stretch factor, s, is assumed to be the same in each channel,

and is related to the Doppler shift, ¢4, as

o4 = (=) . (2-2)

™
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The time delays for each channel are denoted by 11 and Ty and the dif-
ference in time delays, AT = 12 = T is the quantity to be estimated.

The noises nl(ti) and nz(ti) are assumed to be white, complex proc-

esses with circular symmetry3:9, and with variance of real and imaginary
parts equal to oﬁ. The real and imaginary components for each channel
are denoted as

n (ty) = x, (ty) + jy, (tq) k=1,2,
k k k

The received signals are processed according to Figure 2-1., The
processing signal, §(t1), is a time-delayed, time-stretched replica of
the transmitted signal with hypothesis time-delay and time-stretch
values of T and § obtained through some previous estimation procedure.

The processing signal is denoted as follows:
B(ry) = £118(e, D) 39557

The processing signal is assumed normalized to unit energy, i.e.

N

)

i=1

Z..

f[§(t1-¥)]

N

- 2

(e )| = }
1 ‘ 1=1

In the absence of noise, the output of e~rch summation in Figure 2-1

is

N
X = I r(er (ty)

=]

N . - -
= VB T £ (e mD)fls(e m1)]ed % [3(t )8 mD] (g
i=1

AL UEIN
B < S
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which, when viewed as a function of T and §, can be considered as a
two-dimensional correlation between the received and processing signals.

The estimates, T and 3, are often obtained by processing the

L o

received signal with a matched filter. The matched filter concept is
based on the examination of the magnitude-squared of a function

x(t,s,;,é) over an appropriate grid of T and s values, choosing as the

T

estimate of the time-delay and time-stretch those ?,3 pairs which

maximize the magnitude squared, Ix(t,s,?,ﬁ)lz. Note that for signals
with sufficient resolution, the matched filter approach is capable of
resolving multiple reflections; identifying the 1t and s values of each
reflector as distinct maxima on the ?,5 grid.

An important function that arises out of the discussion of matched-
filters is the ambiguity function., The ambiguity function depends only
on the particular signal employed, and is equivalent to the matched fil-
ter for a noiseless scattering channel consisting of a point scatterer.
The accuracy with which one can estimate time-delay and -stretch

depends on the behavior of the signal ambiguity function near the

L]
&

origin. For the reader unfamiliar with matched filter concepts, rather

. :.'-

Wy
. c""' P
a2y A % BN

thorough treatments are given in Van Treeslo, and in Cook and Bernfeldll

’l'l

D 4 ,,-..“

for the narrowband case, and in papers by Altesl2,13 for the wideband

formulation.

The time delay estimator of Figure 2-1 works as follows. First,
the received signal, r(t), representing a composite of the signals rj(t)
and ry(t) (or a related signal) is matched-filtered over an appropri-

ate ;-Q grid, yielding Ix(r,s,;,g)lz. This function is examined over
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the grid, with those peaks that are above a pre-selected threshold

representing substantial reflections in the channel with different time-
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delay and -stretch values estimated by the corresponding T and s values.
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Once a peak has been located, the T and 6 values corresponding to
the peak are used to process the received signal for channels 1 and 2,
yielding xl(tl,s,$,§) and xz(tz,s,?,g). For each peak, the complex numbers
xl(tl,s,§,§) and x;(tz,s,Q,é) are multiplied together, yielding (in the

absence of noise)

Q= xlx; = E°~[zf*[§(t1-;)]f[s(ti-tl)]ejwo(s-s)ti)-

(Zflé(ti-?)]f*{s(ci-rz)]e‘i“o(S'g)ti)eJNOS(fz—rl)
i
- £t (I e elate )

f[é(:j-%)lf*[s<u -12)]e3”o(“5><‘1"j))e3“03(12"1) (2-4)

3

If the time-stretch estimate is assumed correct (i.e E-s), the

first line of (2-4) reduces to

Q- Eo-(zf*[é(:i-%)lflé(ci-rl)])-

(zflé(:i-E)lf*[é(:i-rz)])eJ”og(‘z"x)
i

- ao-(AIA;)e5°o (2-5)

T T T
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where

A= i f*[s(ti--?)]f[s(ti-rk)].

¢o = wos(Tz-Tl).

Hence, it is seen that if the time-stretch estimate is correct, the time

difference of arrival can be obtained from the phase of Q as

AT =

*

if the quantity (AIAZ) is real. Note that if T, = T,, then A, = A; 80
*

that the quantity AIAZ is real. However, with arbitrary Art, Al and Az

must be real independent of one another for most signals of interest,

and it is desired to f£ind sufficent conditions for which this occurs.

To do this it is more convenient to utilize the continuous—~time domain.

In this domain

A = ff*(St'S;)f(st-stk)dt,

where the energy conserving factors have been ignored, as they are

unimportant in the discussion. Defining

g(u) = £(u-a) <=> G(w) = e I“qF(u)
h(u) = £(u=b) <=> H(w) = e I°PF(u),

Parseval's relation,

[ " (Wh(wdu = [ 6" (wH(w)du

.
.
K
.
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can be used to obtain

= | 6" (WH(w)dw = f |F(w)|2 oJus(Tye=1) 4
Ak.“

1f |F(-w)| = |F(w)|, this reduces to

A =2/ IF(w) |2 cos ws (1, ~1)du, (2-6)
[+

which is a real quantity. Hence, a sufficient condition for Ay to be

real has been established. I1f the complex envelope has a symmetric

power spectrum, |I-‘(-w)|2 - |F(m)l2, then A 1s real. Note that this

is dependent on the proper time-stretch estimate but is independent of

the delay estimate. Throughout this thesis, it is assumed that this

condition is satisfied so that A} and Ay will be real quantities.

The performance of this estimator depends on two factors. First,

the additive noise inherent in the channels will degrade performance by

adding unwanted terms to (2-5), thereby corrupting the phase, ¢°.

Second, the estimates, T and s will not exactly match the true values.

If the estimate T is reasonably close to the true values Y and Ty

performance will not be adversely affected, since the only effect of

this is that the factors Al and A2 in (2-5) will become smaller relative

to the additive noise terms as can be seen from the cosine term in

(2-6). 1If the estimate s is incorrect, however, the estimator becomes

biased due to the additional exponential that appears in (2~4). The 7

and s estimates obtained from the matched filter will obviously become

less accurate as the noise level increases.
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In Chapters 3 and 4, the first of these problems is addressed, {i.e.
that of the unwanted noise terms. 1In these chapters it is assumed that
the estimates of T and s are correct. In Chapter 5, the effect of a

' 7-5 mismatch is discussed using a Cramér—Rao lower bound approach. To

simplify the analysis and notation, it is assumed throughout the follow—

ing that the channels contain only one scatterer.
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CHAPTER 3

UNCORRELATED NOISE

The first case to be considered is that of the receiver operating
in white Gaussian noise uncorrelated between channels. The complex
noise process is assumed stationary, ergodic, zero mean, circularly
symmetric, with variance of real and imaginary parts equal to oﬁ. The
real and imaginary components for each channel are independent, and

are denoted as follows:

n,(t;) = xl(ti) + 3y1(‘1)

n,(e,) = x,(t) + jy,(t,)
or more succinctly as

Ny = X + IV k=1,2

where the first subscript identifies the channel, and the second 1is the
time index.

The white noise assumption requires that

2
E{xki xkj} = E{yki ykj} = o Gij k=1,2

where §;4 is the Kronecker delta

1,1=]
5§ =
0 0,1%4

Circular symmetry requires that
E{xki Y} = 0 for all 4; k = 1,2

and the additional assumption of noise uncorrelated between channels

requires that

E{xliij} = Ely y2j) = E{x, y2j) = Elxyy ylj} =0

S
,
.
,

for all 1,j. (3-1)
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The magnitude-squared of the noise process has expectation

2

+y2) = 25 k= 1,2,

2 2
E{Inki| } = Elxyy

The received signal for each channel at time tj is

r (t,) = /B £ls(t,~1)1ed %0557 4 n (2 )

or

= jwos(t -1 )
T /E; £ € 177+

where fki

If the processing signal f(ti) is denoted as follows:

f[s(ti-tk)] is the complex envelope of the received signal.

- o2 ot iwes(ti=T)
r(ti) r, fi e

-~ *ﬁ ~
where fi z f [s(ti-T)] represents the complex envelope of the processing

signal, then the output of each summation block in Figure 2-1 can be

written
X, =L r, r,, =8 £ e-jmog(ti-;) VE £, e398(tmT) 4
S O S o ki Med

2 Juwg[(s-8)t +sT-sT1, ] 5 ~jugs(t{-T)
/}:—o £, i k' + o,fe

- juw_8(T-1,) S —jugs(ty~T)
/f; fifki e’ o k/ + nkifie

= I
i

(1f s=s) (3-2)

where the last line assumes the proper time-stretch estimate, s = S,
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Since the Gaussian noise components are all assumed independent of
one another, the explicit and implicit phase factors in the second term
of (3-2) can be absorbed into the noise process without altering the

statistics of the situation. This yields

-~

- Juos(T-1,) | : - .
x, = /E e’ k E £E, * Elfilnki k=1,2. (3-3)

The second term, being the sum of independent, zero-mean Gaussians 1is
itself a zero-mean Gaussian, which shall be denoted by Ny The real and

imaginary parts of this term have variance

2 2 s 12 2
on = % z |fil = on ?

since I |Ei|2 = ], so that (3-3) can be written as
jw §(;-T ) -
X = /E; Ak e’ o k7 + U k 1,2,
where Ak = T fifki'
The output, Q, of the estimator of Figure 2-1 is then

- * juw s(T-1.)
Q= x,X, 1?; Aje o 1+ "

-ju 8(1- *
j?; Age Juslt=ty) ny

. ju s(1,-1,) * * _
EA A e 02 17+ /E; Apn, + /E; Ain, + nyn, (3-4)

where, as above, the complex exponentials have been absorbed into the
noise terms without altering the statistics.

It has been previously assumed that s=s. If it is now also assumed
that the time difference of arrival, At, is small and that the time delay

estimate, T is accurate such that T = T (k = 1,2), then fki - fi’

so that A = I |f1|2 =1,
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To see what is meant by the words “small” and "accurate,” one needs to

examine (2-6) where it is seen that if cos wmaxg(rk's) = 1, then Ak will

be at its maximum, which is 1. Here @ ox denotes the maximum frequency
of the complex envelope (i.e., Woax equals one-half the signal band-
width). In this case (3-4) reduces to

*

s(T .- *
Q= Eoej“’os(rz . /E n + /E_n, + nn

The presence of the last term in (3-5) renders further analysis
[ intractable, so it is desired to quantify conditions under which this

term becomes negligible. The expectation of the magnitude-squared of

of the process can be found as

El|nny |%) = E{[Re(n n)1%} + E{{Ia(n n3)]?)

4
= Aon ,

where E{*} is the expectation operator. Thus, if the input signal-to-

noise ratio is defined as

Input Signal Energy Eo Eo

= Expected Input Noise Energy = =

h
N-E{Inkilzl 2Nof1

then the ratio of the magnitude-squared of the first term of (3-5) to
that of the second or third term has expectation

E2 E

0 = g-Nh (3-6)
E{E +|n |} 20

- while the ratio of the magnitude of the first term to that of the last

term has expectation

..............
.............
....................
LN -

...............
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E 2
°4 = (Nh)“ . (3-7)
4on

Here, as in the previous chapter, N is the number of input samples. By
comparing (3-6) and (3-7), it is seen that the last term of (3-5) 1is of
second order. For example, if there is a OdB input SNR (h=1) and there
are 1000 input samples, then the second and third terms are 30dB below
the first, while the last term is 60dB below the first. For the rest of
the -development, it is assumed that the quantity Nh is large enough so
that the last term of (3-5) can be ignored. It will be seen that for
values of Nh as small as 10, this approximation yields variances con-
sistent with those obtained through computer simulations.

It is seen that for large Nh, the output SNR, given approximately
by (3-6), is N times as large as the input SNR. The factor N can thus
be considered as a processing gain. For a receiver sampling at a
frequency equal to the bandwidth of the signal, N is equal to the
time-bandwidth product of the signal, so that the receiver structure of
Figure 2-1 is seen to have a processing gain equal to the time-bandwidth
product of the signal.

Defining N, such that

ng = VE (n1+n;).
(3-5) reduces to

Q= Eoejwos(TZ-Tl) + g, (3-8)

where nq is a complex Gaussian process with variance of real and

imaginary parts equal to

2 2
o3 = ZEocn . (3-9)
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Q can be written in terms of its real and imaginary parts as

-aF oJ¢
Q Eoe o + n3

Eo(cos¢° + jsin¢°) + utjv

a+ u+ j(b+v)

where

©
[}

mos(tz—rl)

n
L}

Eocos¢°, b = Eosin¢o

us= Re{n3}, var(u) = 0

<
]
W WK

Im{n3}, var(v) = ¢

so that our estimate of ¢°, denoted by ¢, is

-1,/b+
¢ = tan (;;%). (3-10)

In the absence of noise it is noticed that ¢*¢° as desired.

In order to evaluate the performance of this estimator, it is
desired to find the probability density function for ¢, denoted by £f(¢).
The density function, f(4) would be more precisely notated as f(¢|¢o),
and might be more properly regarded as a likelihood function.l4 Also,
it is noted that the estimator to be derived is a maximum likelihood
estimatorll»15 of ¢° for the uncorrelated noise case.

The numerator and denominator of the arctan argument in (3-10)
are independent and have Gaussian densities with mean b and a,
respectively. The joint density for numerator and denominator is thus
the product of the two marginal Gaussian densities, and to find the
density for ¢, one may convert to polar coordinates as follows, and
integrate over 0 < r< =, Letting u+a = rcosé¢ and v+b = rsin¢é, the joint

density becomes
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f(u,v) = 12 exp —-—é— (u2+v2) +
Zwo3 203
1 -1
£(r,4) = —5—r exp —— [(rcos¢-a)” + (rsint-b)“] ,
2w03 203

T TEEENT Y Y W

where the factor r is the Jacobian of the transformation. The desired

density is obtained by integrating over r:

£(¢) = [ £(r,¢)dr
[o]

= 12 exp -; [a2+b2] « [ r exp -; [r2 = 2r(acos¢ + bsiné)ldr.
Zwo3 203 o 203

Recalling that a = Eocostb° and b = Eosin¢°, and using a well known

trigonometric identify, the above expression becomes

1 -E: o 2
£(4) = 5 exp —— ° [ r exp 5 [r® = 2E_rcos($=¢ )]dr,
o o
21rc3 205 o 203

or, making a change of integration variable,

2 2
E @ _Eo 2
£(¢) = [ r exp 5 [t” = 2 cos(¢=¢ )r + 1)dr,
2105 o 20 °
3 3

which is a function only of ¢- and (——] Recall that c§ = ZEogn’ and

h=E /2N02, so that
° n

Ez E:
T- 2 -Nho
o 2E“0

3 on

Here again, h is the input signal to noise ratio, and N is the number of

input samples. Finally, then, the densitv is written
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=t

€2 [rexp [x? - 2 cos(¢-¢ _)rldr, (3-11)

£() = o2

O“— 8

which is a function only of ¢-¢o and the quantity Nh.

Unfortunately, the density given by (3-11) cannot be expressed in
closed form. The integral in (3-11) can be found in the tables by
Gradshteyn and Ryzhikl® (#3.462.5), where it is expressed in terms of
the error function, but the solution is only valid in our case for
cos(¢-¢°) < 0. The density of (3-11) is integrated numerically on a

VAX 11/782, yielding the curves in Figures 3-1 and 3-2. Note that

although these densities are defined over -m < ¢-¢, < 7, in Figures 3-1
and 3-2 they are shown over a smaller range to better see their shape.
Also, a curve of the variance as a function of the output signal to
noise ratio Nh was generated digitally, yielding Figure 3-3.

It must be noted that the moment quantities depend on the inte-
gration limits chosen. Mathematically, any limits of the form
8 < ¢ < 86+ 2r will do, however for the application here, the choice

is clear. Choosing the limits ¢°-ﬂ < ¢ < ¢o+n, the mean, u, is given by

¢°+1t -
w= [ e£(e)de = [ (446 E(¢+6 )do s
¢ -7 -1 RO
o Tl

T n
= [ of(e+e )de + ¢ [ £(o+s )do

-1 -7

-0+¢os¢°,

- . N L . -~ toaT e ow

-
N T .
SISO S WA R SRS I AL I & Wiy W SRS AR Y G S




T i .l--... alah0 0y, .-,..
3 v-v-%\-\-)-
J 4 'ty J.—-..-

\h\ -4 u.nhl.l - * . e [ PR N -t

19

001°0S°0Z‘01=UN ¢3sTON pa3ie[aliodup 103 10jewWfIsy jo K3ysuaq L3FTIqeqoad :1-¢ @andy4:

(s22183p) %_¢
d 08 09 or 02 0 02— oy— 08— o8-
. 06 0oL Qs 0ot ol oL- oe—- Qs- QL- 06~

r Py e a e

T 600°
g'ro.
T SLO°

4 szo*
4 co
1 sco°

K3 sueq

T 6%0°

F 60°
T S60°

1 c90°
.._ . 001=4N L0
. + szo0°

s e O, e e At “ DR IDEVORNA) - QAN Sl S NN SO AROPAL | RN




20

0001 °00S ‘00Z°001=UN !asjoN pajeyaiizoduq l10j 10jewylsy jo L3ysusg LITT¥qeqord :z-g dIndyg

o
sa218a ¢-¢
oe 08 (0] 4 P 0
06 ﬂ% 0s o

A a re e & r iy
g v v v - v -

- > v

»

'
g

MM N 20 L AP e wh a8 20 B o TEv aWTWv ey egrwy

»

001

0
00¢ 1

000 T=4N

.r\
o
L
b

o

AR E AL

per

4
QL ot~ (8] ag o~ 0L~ o6~

20’

+0°

90°

80"

43

1 4 3

a9t

12 3

£31susq

ee*’

ve*

Aot udicdadusbachadiiiii adadiatintoninduSaSED. - .
PP - - L L. . .
ARl A, Ve SWRITIF W USURERE RN Y | DO )

.

AN

DEPERr -
PRCIE A
Pa*alara

2

~

A
e,
ST e

-
it A

a e T
RS

ALl

T

Ve

‘-' o, e >\~ .‘!.n" SR -
AR SRR AL
) " LSRN ES

" -
~ gy

)";1

RNEINEN
.

. %)

LTy
RS B

-
W)

e,
ol

e
o,
o

-
. e

. .

.
-

iy



-

38JON pajefo1i10duf) 10J JOJBWEIS] JO IDUBFIBA

-

O

-

N
o
F

tg-¢ 2an3y1g

ST AN ORI

WKV

|

(peionbs see.bep) ®2UD|4DA

et e
o\

b}

N

i
2t o

od

.
. W1

oL

hd
AP |

v
ey

ot

a

*at
" .
o

3

P




where the first integral is zero due to its odd integrand integrated

over symmetric limits, and the second integral is 1 since it represents

the area under density, f(¢). Hence, with this choice of integration

limits, the mean is equal to the true value (i.e., the estimator is

unbiased), so that the variance is a measure of the fluctuation of ¢

about the true value, ¢°.

The estimate of time delay is given by

At = 2

-
ws
(o]

which has mean equal to the true value (if ;-s), and variance

| ¢0

E{AT} =

>

w s W
o o

2

var{at} = [

(w°§)2

where 02 = var(¢) 1s shown in Figure 3-3.

From Figure 3-3, it is seen that the variance of this estimator

decreases approximately as 1/Nh. Under previously stated assumption, N

can be replaced by the time~bandwidth product of the signal, and the

time delay estimator is seen to take advantage of the processing gain of

large time-bandwidth product signals to reduce the variance of the time

difference estimate.

.......
------

-------------------
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In order to test the validity of the variance curve of Figure 3-3,

the estimation procedure of Figure 2-1 is simulated on a computer. The

[4
.

signal used for the simulation is based on a Welsh constructionl? with a

:".\f‘.'f
S SR
real envelope. The signal is of the following form t:‘_:' ¥
oA
£(r)ed ™ot T
7 ‘7‘;
where . :
.
fo = 30,000Hz i fi y
1 550
f(v) -.w(t)c0821fit (i—l)TB <t iTs 2 750
3 650
Ts = subpulse length 4 700
= .05 seconds 5 350
6 850
w(t) = 50 dB Taylor Windowl8 7 600
8 400
9 500
10 450
11 800
12 300

The ambiguity function of this signal is shown in Figure 3-4. Note
that this signal has good resolution both in t and in s, due to its
large time-bandwidth product. Note also that by giving the signal a
real envelope, one obtains a symmetric spectrum as required By (2~6).

The signal is sampled at 1700Hz and matched-filtered using the
correct T amd s values, T = T 1.0, s=s=1. Next, 1000 complex

Gaussian noise samples were generated, normalized as in (3-9), and added
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to O as in (3-8) to obtain a sample mean and variance to compare with
the theoretical unbiased mean and the variance of Figure 3-3. The

results are summarized in Table 3-]1 table for ¢o = 0 and ¢° = 45°,

Table 3-1

Theoretjical versus Sample Means and Variances

Nh 10 100 1000 10,000 |

}Theoretical Mean (Deg) | 0.000 | 0.000 | 0.000 0.000 {

00 = 0° lSample Mean } 0.068 } 0.045 | 0.015 0.005 ;

E | |Theoretical Variance I 380.0 ‘ 33.2 | 3.3 | 0.36 :
:Sample Variance : 369.0 { 34.0 3.4 { 0.34 {

Theoretical Mean ; 45,00 } 45,00 45.00 } 45.00 ;

¢o = 45°|Sample Mean ‘ 45.84 ‘ 45,25 ‘ 45.09 ‘ 45,05 l

Theoretical Variance { 380.0 : 33.2 : 3.3 : 0.36 :

| Sample Variance E 379.6 E 35.0 i 3.5 ? 0.34 E

It is seen that the expressions derived above for the density func-
tion of the estimator generally predict variances consistent with the
sample variances of the simulations even for values of Nh as low as 10,
and the sample mean approaches the theoretical mean, ¢°, for large values
of Nh.

This concludes the analysis of the estimator operating in uncorre-

lated noise. The next chapter will discuss the considerably more com=

plicated case of noise which is correlated between channels.,
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CHAPTER 4

CORRELATED NOISE

In this chapter, the receiver performance is evaluated when
operating in white Gaussian noise which is correlated between channels.
As in the previous chapter, the noise is assumed to be a white, cir-

cularly complex Gaussian process, so that

E{xkiyki} =0 for all i; k = 1,2

2
E{xkixkj} = E{ykiykj} =0 511 k=1,2,
The noise process is assumed to be correlated as follows:6

2
Elxyy%p5 = Elyygyyy} = ey 84y

2
E{xliYZj} = -E{xzjyli} = Acn Gij'

A physical interpretation of p and A is given in Appendix A. It is

noted here for future reference that p and A are such that

o2+ % ¢ . (4-1)

This can be seen from examining eigenvalues of the covariance matrix
for the density f(xl,yl,xz,yz), noting that since the covariance matrix
is positive definite, its eigenvalues must all be positive.19

The development of Chapter > may be followed up to (3-2) without

modification, Equation (3-2) is repeated here for convenience:

_ o du 8(i-T) v os : _-ju_s(t,=1) .
Xp /E:e o k E £of, + E nfy €79 k ngi)
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Xk represents the output of the kth summation block in Figure 2-1, and
(4=2) assumes the correct time-stretch estimate. Since the complex

noise is assumed correlated between channels, more care must be taken
when absorbing the complex exponential of the last term of (4-2) into

the noise process.

1f the second term of (4-2) is written in terms of its real and

imaginary components,

s =jw _s(t,-T) _
f nkifi e~ o 1 u

then the correlation coefficients for ups Vis Uy Yy can be expressed

T T
o i

AN

v =
[}

in terms of the input correlation coefficients, ¢ and A. Using the
results of Appendix B and the fact that the time samples of the noise
are independent, it can be shown that Uy, Vps Ugs v, have the
gsame correlation coefficients as X140 Y14 %2g0 and Yoyl that is,
E{u,u,} = E{v_ v, } = 002
172 12 n

2
E{ulvz} - -E{uzvl} = ch .

k‘
t It is noted that the variances also remain unchanged, due to the fact
\
E that the processing signal is of unit energy.
. As in the previous chapter, this processed noise term is denoted
S by N, '
: -y + : du s(esT)
v M Ty jvk = I L f1 e- o 1 k =1,2
i
1
n 2
- with variance of real and imaginary parts egual to on.
N
=
N,
R
.1
:i
N e e R N ey A e R T I I T T e e
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If Ak is again defined as

then the output of each summation block in Figure 2-1 can be written as

D T T St S N . s -t .
L . . o . e L PP S PR R
P U . PR, W AP PO DU WAL VPR W DT TR U U U Y W SRy 1 Py g 1 Aok and

X = /E: Ak eijS(T-tk) + “k k=1,2

so that the output 0, is given by

. ju_s(T=1,) —ju 8(T-T.) L %
Q=xx, = [VEA e 1’ +n J[/E A, e % 2’ + ]

e jo s(t.-1.) -ju _s(T-1,) * ju s(T-1))
E ‘A Aye’ o 21+/E:A2nle o 2+v’)-':'.:Aln2eo 1

172
*
+ 0, (4=3)
Defining
= -jw s(1=-1.) - -
nl nle o 2 ) + jvl
- - -jm ;(;-T ) - - -
n2 n,e o 1 u, + jv2

it is again desired to find the correlation coefficients of ;1, ;1,

Uy, Yy in terms of p and A. The results follow from direct application

- atom " -
R D SR
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of Appendix B, and are summarized below:

a U = g v = Ld 2=~2
E{uluzl E{vlvz} (cp dk)an PO

2

- - ~ o~ - 2=~
E{ulvz} —E{vluzl (ch + dp)cn kon

S 3 YT T e 8T 5 B AN A R e e W B e v v
f
.

where
N c = cos wos(tz-rl)

d = sin wos(tz-rl).

and the new correlation coefficients, p and A are introduced to simplify

! notation in the following development. It is noted for future reference
that

52 + 12 = (c? + aB)(o? + D)

-0 +22<1

.y ... T

2

g where 92 + 27 < 1 as in (4-1).

Equation (4~3) can now be written in terms of ﬁl and 52 as

. R T LT

: Q= Eo'AlAzejwoa(TZ-Tl) + VE A0, + /E;Alﬁ; + ﬁlE;eJ“oS(‘z"l)

. . X

J = £ ed90% T 4 JECGR 4 np) + Ry 95T (4-4)
where the last step assumes that the estimate of time delay 1s correct,

i and that the time difference of arrival is small so that Al = 1 and

E Az = 1, as in the previous éhapter.
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Again, as a concession to tractability, conditions under which the

a l.'~\» N

WAJCRY
X

[
...I'

last term is negligible are quantified. The expectation of the
- =k
magnitude-squared of the process n,n, can be found directly through W

LS
tedious integration to be ~
LY

EL|R 7512} = E{[Re(R75)1%) + E{[In(R 75)1%)

2

4C1 + 52 + 32 <aa:‘l

|
Where the inequality arises from the fact that p> + A% < 1. Thus

with the 1input signal-to-noise ratio defined as

the ratio of the magnitude-squared of the first term of (4=~4) to that of

the second or third term has expectation

2

-——°_——2— = Nh (4-5)
E{(v’?::nk) }

E

as in (3-6), while the ratio of the magnitude-squared of the first term

to the expected magnitude-squared of the last term is

2 2
E E E
> = g () = o)’ (4=6)
Exlnlﬂzl } 80n o

From (4-5) and ((-6) 1t {s seen that the last term of (4-4) 1s again of
second order, becoming negligible for large values of Nh. For example,

if Nh = 1000, then the second and third terms are 30dB below the first,
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while the last term is at least 57dB below the first. Throughout the
rest of the chapter, the last term of (4-4) is dropped.

In terms of its real and imaginary parts, Q can be written as
(T .~ *
0=k -5 4+ /En +
o o'l o2

= E -ej¢o + VEn, + /E n*
o ol o2

a+jb+v/§;[\.11+l.12+j(;1~;2)]

a+/§:(|}l+\:2)+j[b+v’li_o-(\;1-\-72)]

where

¢ = w°§(12 - 11)

o
a = E cos¢ b = E sind
o o o o
u, = Re{nl} vy = Im{nl}
u, = Re{ﬂz} v, = Im{nz}
var{u } = o’ var{v,} = o2 k = 1,2
. Y n k n ’
- - - - - 2
E{uluz} E{vlvz} p o

2

E{ulvz} - -E{vluz} = ) cn
5 = p cos$¢ == X sind
o o

A= + .
p sin¢° A cos¢°
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The estimate of ¢° is then given by ¢, where

b + /E;(GI-GZ)

¢ = tan ° ( ) = ean (D)

+ YE (u,+u
a Eo(u1 uz)
and where x = Gl+ 62’ y = ;1- ;2. In order to evaluate the
statistics of this estimator, it is necessary to find the covariance
matrix for the numerator and denominator of the argument of the arc-

tangent. Denoting this by Bwy’ it is seen that

E{xz} E{xy}

R = 2E g2 [(1HP) - A
Xy 2 o n | _ -
E{xy} E{y"} =2 (1-0p)
o} 2 p 0O
- | % Xy Xy
p o0 0O c 2
Xy xy y

where

It 1s noted that pxy < 1 since 52 + Xz < 1. The joint Gaussian density

is then8

)

X
J_

f(x,y) = —-——l_TT7E exp (' % [x,y] Bxy
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; 1 I— -1 (xZ -2 XY i;
exp 2(1- 2 ) o2 pxy v o o2
< Py » Xy y

.
—

y

210 @ /1—92
Xy Xy

Once again, the change of variables x + a = r cos¢, y + b = r sin¢ is
made to obtain the density for ¢ = tan-l(izg). After considerable

algebraic manipulation the joint density £f(r,¢) is obtained:

r 2 T
f(r,¢) = - — e e'"(fg) v (E—o)
2m6 © /1-92
Xy Xy
where
- 2 —
_ 1 a b™ _ ab
k= 2(1_02 ) z* o2 2pxy %y %y
xy’ |_x y -
E2 2 2 N
(o] cos ¢ sin"¢ sinédcosd
u = + - 2p =t
2(1_‘)2 ) c2 o2 Xy oxoy
xy’ |[_'x y _
1:-'o a cos ¢ b sin¢ a sing + b cos¢—
AVER J + + ( L]
2(1_‘)2 ) 02 02 Xy oxoy
Xy b4 y

The desired demsity, f(¢) is again obtained by integrating the joint

density, f(r,¢) over all values of r, i.e.
£(¢) = [ £(r,¢)dr.
o

This integral 1is of the same form as that of (3-~11), but with consid-
erably more complicated coefficients in the exponential. These coef-

ficients can be substantially simplified by writing Oy ay and pxy in
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terms of s 5, and X and by recalling that a = E cosé and b = Eosin¢°,

yielding
E, . . |
' k = ——— (1 = p cos(2¢ ) + 2 A cosé_siné
! 40 (1-p2-32) 0 o Sir¢,
n
Eo - -~
L M {1 - p cos(2¢) + 2 X cosé sine]
40" (1-p"=17)
n
Eo [ . . ]
) V = | cos(¢~¢ ) = P cos(¢+¢ ) + A sin(é+d )|, (4-7)
3 : Aoi(l-pz-xz) ° 0 0

The density is then written

-k L]
£(¢) = £ [r exp[-u(-;'_.:—)z + Zv(%‘-—)]dr
41E o2 V1-pl-3% © ° °
on
: -k
Y E e o :
= 2 [ t exp[-u 24 2vr]dr (4-8)

. 4no§ V1-p2-3% ©

Where the second line results from a change of integration variable.
Once again the integral for f(¢) cannot be put in closed form. It is
seen that for the correlated noise case, the densitv f(¢) {s a rather
unwieldy function of several parameters: Eo/oz, 5, i, and ¢°. In
addition, p and X are in turn functions of ¢° and the input noise

correlation coefficients p and A, The quantity Eolcﬁ in (4=7) and (4-8)
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is replaced by the quantity 2Nh to get the density in terms of the input
signal~to-noise ratio.

Roughly speaking, the quantity Eoloi controls the sharpness of the
density, while the correlation coefficients alter its shape. The
density is integrated numerically for various combinations of parameters
yielding Figures 4-1, 4, 7, and 10.

The densities are then used to generate curves of the mean and
variance of the estimator for these combinations of parameters, yielding
the continuous curves in Figures 4-2, 5, 8, 11 and 4-3, 6, 9, 12. It is
again noted that the moment quantities depend on the integration limits
chosen. For the correlated noise case, the choice of these limits does
not seem as clear as it was for the uncorrelated noise case, because the
estimator is now biased. If the same limits are chosen for this case
however, the estimator will become unbiased for large values of Nh, so
the integration limits are again chosen as ¢o -n< ¢ < ¢° + n,

These curves are again verified using the same signal and sampling
parameters as in the previous chapter, yielding the discrete points in
the mean and variance curves. The noise model used in these simulations
is described in Appendix A, with the incoherent noise correlation
coefficient, Di set equal to zero so that the incoherent noise is uncor—
related between channels. The coherent noise is the same in each channel

except for a phase delay,

¢ -i¢ c
n = e i cn
21 11
.1
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where ¢c = tan.l(%J, p and A being the input noise correlation coeffi-
cents. The incoherent noise has variance of real and imaginary parts
2 2
o = (l-r)crn .
while the coherent noise has variance

2
02 aro ,
c n

where r = ¢92+A2, and onz is the total noise variance.

From these figures, it is seen that both the sample and theoretical
means approach the true values for large values of Nh. Also, the vari-
ances predicted by theory are consistent with the sample variances gen-
erated by the simulation for large Nh. The theoretical curves are
accurate only for Nh of about 100 or greater due to the approximation
made by developing the last term of 4=4.

Again it is seen that for large Nh, the variance drops of as 1/Nh.
Replacing N with the time~bandwidth product of the signal (as in the
previous chapter), it is again seen that the estimator takes advantage
of the processing gain of large time-~bandwidth signals to reduce the
estimator variance.

The analysis of this and the previous chapters has assumed that the
time-stretch and -delav estimates are correct. In most cases these
estimates will not be exactly correct. The effect of a T-s mismatch is

the subject of the following chapter.
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CHAPTER 5

T-s MISMATCH

In Chapters 3 and 4 it was assumed that the estimates of time-delay
and -stretch were correct. In practice, these estimates will not be

exact, and this will affect the performance of the time difference

estimator. In order to examine the effects of a t=-s mismatch, it is :}
s’.:
necessary to go back to Equation (3-2), before any assumptions about ;
T and s were made. The second line of (3-2) is repeated here for
convenience: -
- an -~ ~ o -
- .y £ ju_ [(s-s)t, + s1-s7T ] s _—Jw s(t,-1) P
Xy v"}:‘;ffifkieo i k+fnkifie o1 T

where X represents the output of the kth channel in Figure 2-1. This

can be rewritten in the following form:

L o s(iet) —jo (s-8)T | . ¢ ju_(s=8)t el
xk /f:e o ke (¢} i fifki e’ o i+ nk ;L‘;\j
AR
T
- et o8 5 2 jo %
/E:e ke X fifki e’ 1 + nk g

i

- 2 _~jw s(t,-1) s
e f n g fi e o i

Iy

where N ]
O = wos(ToTy) fi;‘fl

a, = wo(s-s)ti ’ B = wo(s-s)r ;u;i:{

| v b
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The output of Figure 2-1 is then written as
. * . 36 _3(8-B) - ja ak *  -ja
Q X)Xy Eo e’'o e f fifli e’ 1 ; fjfZJ e "]
-jé, ~-i8 ak & ja jo, 48 * _ a ja
+ JEZE 2 e n § fjij e 1+ /EZE le n, i fifli e 1
*
+ n.n (5-2)

12
where

¢o - ¢1 - ¢2 = wos(TZ-Tl) *
jé

In this equation, e” o represents the true signal phase difference, and

j8

it is seen that the bias represented by the factor e cancels itself,

80 that the only bias remaining in the first term is that contributed by

+ +
the double summation. It is also noted that the factors e 18 and e jai

do not affect the correlation coefficients between the second and third
terms (see Appendix B). The last term will be dropped under previously
stated SNR assumptions. '

If the assumption is again made that the time difference of
arrival, 12-11 is small relative to the bandwidth of the signal as in

previous chapters, then f21 ~ £,,» so that the first term in (5-2)

becomes |
o

O L Ja, | 5 g** -ja L 308 =6.) o s ja 2 2
E e of ff, 001 ;:fjf2j e 1% = g *17%2 “1: 2% N (R £
(5-3) '

;;;.-:“,-.5
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so that there is no bias in the estimate of ¢° due to an incorrect time-
stretch hypothesis. There still remains, however, a bias in the time
difference estimate. This bias occurs from using the estimated time
stretch, 3, rather than the true time-stretch, s. The estimated time
difference (in the absence of noise) is

¢ ¢

07 = —2 - @« (1 - E2) - oar(1 - £8) (5-4)
w s s + uo(s-s) o® 8 8

where AT is the estimate of =Ty At is the true value, ¢° = ¢1-¢2 =
wos(Tz-rl), and where a binomial expansion yields the approximation.

For reasonably good time-stretch estimates (i.e., |s=s|<<l) this bias
will be negligible.

Comparing the magnitude-squared factor in (5-3) with (2-3) and
noting the discussion following (2-3) it is seen that this factor is the
magnitude-squared of the matched filter output whose main peak is at
T = T s = s, evaluated at the point (;,E) corresponding to the esti-
mates of the the true values. If the T and s estimates are not exactly
correct, the magnitude-squared factor in (5-3) will become smaller,
effectively lowering the signal-to-noise ratio.

Thus, it is seen that a T-s mismatch does not affect the noise terms
(or change any bias due to the noise terms), and if the time difference
of arrival is small, the only effect is a slight bias represented by
(5-4), and a decrease in the signal-to-noise ratio due to the magnitude-

squared factor in (5-3).

o et e T S N N STt St SO R R TS R e S

$ '.-.. 4._.-. . n_‘ \‘ PR} -
PO VUL SRR SRR AORWE NN OWEARILVE ST AT ARSI S S S S G L WP T PR NG v L . VR0



B
-
-
0
-

P W W W T WV VL TRV VIR W YV Lotatat iy et P ! Ay : “wmww
) )
-
*

1f the time difference of arrival cannot be assumed small, as was
necessary to derive (5-3), then the sum must remain as in the first term
of (5-2). The problem thus becomes more difficult, and the performance
depends on the particular signal employed.

A special case of interest here is that of a real envelope signal
(such as that employed in the examples of the previous two chapters). 1In
this case, the double sum in first term of (5-2) can be written as

follows:

e, 3% Bt eIz £f, f;f;j eduo(8=8)(ty=ty)
ij (5-5)
(where the complex conjugate symbols have been retained for future
reference) so that a crude upper bound can be placed on the phase bias

contributed by this term:

|¢b| < mols-slT (5-6)

where *b denotes the phase bias and T is the signal duration.

It is desired to obtain an idea of the typical size of the estima-
tion errors for the time-stretch. The estimation errors for matched
filter receivers have been considered by VanTreeslO and by Cook and
Bernfeldll, who use a Cramer-Rao lower bound approach to derive an
expression for the minimum error variances for this estimate, and who
show that the estimation errors approach the Cramer-Rao bound for
wmaximum-likelihood estimators.,

In general, the est.mation error for s will be coupled with that for
T, but a sufficient condition under which these estimates become
uncoupled is that the signal employed has a real envelopelo, which has

already been assumed.
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Adapting the discussion in Cook and Bernfeld, and noting equation

v (2-2), the variance for the time-stretch estimate is bounded as follows:

2
(l/mo)

£%h

E{(s-8)%) » (5-7)

#3704 0 8 » °

where h is the input SNR, and £ is the RMS signal duration, given by

T/2
f tzlf(t)lzdt
-T/2

2 1
Tz
where E is the'signal energy, and f(t) is the unsampled signal envelope.

b, Following the example given in the paper by Ricker,7 if the real

envelope has constant amplitude, LA and bandwidth B>> -.i.—, the energy

-
:; becomes
&
1 2
i E 5wo T
and
T/2 2
Ez" 2 fwztzdt--—
wr-r/2 °
o
so that

(5-8)

E{(s-8)2} » —2 5

(moT) h

If the standard deviation corresponding to (5~8) is considered a
useful estimate of the magnitude of the error in the time=-stretch

estimate, then (5-4) becomes
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/6 ) = at(1 /6 )
/h wosT v /h on

AT ~ at(1 ¢

so that the bias term is seen to be negligible for most situations, where

b w,T > Y6, Using the standard deviation in (5-6) yields
6
le,| - /& (5-9)

This expression appears somewhat disappointing, but in practice,
this large bias estimate is often due to the crudeness of the bound,
rather than to poor performance of the estimator. In many situations,
the time difference of arrival is known to have an upper bound (i.e.,
AT(ATmax), and for a given signal, one can use this "worst case" time
difference in (5-5) along with the estimate of |s-§| in (5-8) to calcu-
late an estimate of the bias, ¢b. Indeed, this estimator is inherently
limited to estimating delays that fall within a range corresponding to

the time required for the carrier to complete one cycle, i.e.

$ o<, 2

min
or
<
wosATmin wosAt < wosATmin + 27
AT € At € AT
min max
where
¢ ¢
At - min _ "min
min w s w
o o
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In essence, a priori knowledge of the range of possible time dif-
ferences is required so that one can assign the proper time-~delay value
to an observed phase difference. If, for example, At is known to be
small and positive then Atm

i
and the phase, ¢, is defined on (0,21).

will be selected as zero, At -1
n max fo

If, for At = AT the coefficients f.., and f,, are nearly the same
max 11 2i

then the imaginary part of the product of the two sums on the left-hand

side of (5-5) will be nearly zero. For example, if the carrier frequency
1s 30kHz, the modulation is a 850Hz pure tone, the signal duration is
600 msec, the sampling frequency is 1700Hz, and Thin

then the bias in phase is calculated numerically for real envelope

1
=0, ATmax “Tf
)

signals to yield the following table:
TABLE 5-1

Phase Bias for Real Envelope Signal

Input SNR Atpax (usec) [¢p] (degrees)
20 dB 0.0333 =0
0.333 9.49 x 10~6
3.33 1.49 x 1074
33.3 (= 1/£,) 1.44 x 1073
10 dB 0.0333 3.43 x 1000
0.333 1.55 x 10™4
3.33 1.47 x 10-3
33.3 1.47 x 10-2
0 dB 0.0333 1.97 x 102
0.333 1.54 x 10~2
3.33 1.63 x 10-2
33.3 1.65 x 10-1
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One would expect that for more complicated real-envelope waveforms

with modulation frequencies no greater than 850Hz the bias values would

&

rJ ..Lf(-\-.
s A SN
.

be somewhat less than those of Table 5-1, since for lower modulation

-~

frequencies the coefficients fu and f21 would be more nearly the same.
Hence, the simplified numerical computations yielding Table 5-1 would
provide a means of estimating the bias error of receivers utilizing
more complicated real-envelope waveforms of a given bandwidth.

Because the method used to generate Table 5-1 appears to be of a
more general usefulness, the process is parameterized, and the FORTRAN
source code is included in Appendix C. The parameterization is useful
because with it one can perform the computations once for a whole class
of signals, rather than having to repeat the computations for each
specific signal used. This parameterization is explained in the comments
of the FORTRAN source code.

If the signal used is not a real-envelope signal as was assumed
above then the above procedure is not valid, but the bias can still be
evaluated numerically in the same fashion for each specific signal using
the maximum time difference and the standard deviation obtained from the
Cramer—Rao bound. It is mentioned here that if the signal does not have
a real envelope, then in general the estimates of T and s will in general
be coupled. 1In this case the bound given by (5-7) will still be valid,
but will not be as tight as possible. A tighter bound that accounts for
T=s coupling is discussed in Van Trees and in Cook and Bernfeld.

It is desired to combine the results of this chapter with those of
previous chapters in order to come up with a rule of thumb measure of the

total performance of the estimator. Here the noise will be assumed

N - e N T N e
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uncorrelated (as in Chapter 3). The measure of performance to be
derived will be E{(¢-¢°)2}, which represents the expectation of the
squared deviations of the estimator from the true value, ¢°. The
previous discussion in this chapter implies that the effect of the t-s
mismatch can be taken into account by replacing ¢° with ¢° + ¢b’ where ¢b
is a zero-mean random process with variance determined from the
Cramer-Rao bound as discussed above. Without loss of generality, ¢

will be assumed zero, so that the variance of Figure 3-3 will now
represent E{(¢-¢b)2}. The densities of Figures 3-1 and 3-2 will here be
represented’ as f(¢|¢b) in accordance with the discussion following
Equation 3-10. Denoting the marginal densities for the bias, ¢b and for

the total estimate, ¢, as f(¢°) and f(¢), respectively, the density f(¢)

can be expressed as9

n
£(4) = [ £00]6,)EC6,)d0y.
-T

Then
"
E((o-0 )%} = E(6?} = [ o2 £(#)as

-7

T n 2

= ] U] % £(ole,)da0}C0,) db,
- -
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where the order of integration has been interchanged. Noting that

02 = (¢'¢b)2 - ¢§ + 2¢¢b, the inner integral becomes

-

T2 7 2
[ ® £(o]6,)dé = _£ (=6, )7£(o ]9, )dé

2 " T
- 6 _{ £(0]0,)d¢ + 24, _£ LI U

In this equation, it is noted that the first integral is precisely the
variance 02, plotted in Figure 3-3, the second integral is equal to
unity, and the third integral is precisely ¢b’ so that

n

E{(4-0 )%} = [ [0? + 62]5Co a0,

-

= 0" +0 . (5-10)

Hence, under the assumptions stated, one may merely add the
variance °§ obtained from the Cramer-Rao bound to the variance 02 from
Figure 3-=3 to obtain a rule-of-thumb value for the deviations of the
estimator about the true value. Note that while this rule—of-thumb
was derived for the uncorrelated noise case, it is also valid for

the correlated noise case if the signal-to-noise ratio is high enough

that the mean of the estimator is nearly equal to the true value, ¢°.
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This concludes the discussion of the effects on the estimator of a
7-s mismatch. To summarize, if the time difference of arrival is small,
then the only effect of a t~s mismatch is a slight bias as in (5-4) and
a decrease in the effective signal-to-noise ratio. If the time
difference of arrival is not small, then the phase becomes biased. A
crude estimate of this bias is given in (5-9). This estimate is
independent of the properties of the signal. A better estimate can be
obtained by assuming a maximum time difference, and by considering the
properties of the signal employed. For real envelope signals, this
process can be parameterized and computed via the program in Appendix C.
For more general signals, one must use the specific signal to calculate
the phase of (5-5). A mismatch in 1 still affects only the effective
sigal-to-noise ratio.

The variance, oﬁ, can be added to the variances given in the graphs
in the previous chapters to provide a rule-of-thumb measure of the

estimator performance.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

It has been shown in the previous chapters that wideband signals may
be used for phase-comparison time delay estimation provided the signals
employed have a symmetric power spectrum. Chapter 3 analyzed the
performance of the estimator operating in uncorrelated noise, while
Chapter 4 discussed the performance in correlated noise. The
uncorrelated assumption is often used in practice, where correlation
properties of the noise may not be available.

It was shown that in correlated noise the estimator becomes biased,
but approaches an unbiased estimator for favorable signal-to-noise
ratios. For signal-to-noise ratios in which the densities derived are
valid, the variances fall off as -%E, and the sample means and variances
approach the derived theoretical values. By expressing the number of
input samples, N, as the time-bandwidth product of the signal, the

estimator was shown to use the processing gain of large time-bandwidth

product signals to reduce the estimator variance.

In Chapter 5, the effects of a 1~s mismatch were examined. Central
to this is the Cramér-Rao lower bound on the time-stretch estimate. A
rule-of-thumb was given for estimating the squarad deviations of the
estimator from the true value.

This method of time delay estimation has advantages over existing

methods in that it can handle Doppler shifted channels with ease, and "IN
that it can identify and estimate the time delay for resolvable scat- ST

terers each with distinct t-s values.
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Further work remains in evaluating the estimator for multiple point

channels, and investigating possible interference phenomena between the
different point reflectors. Also, work remains in designing signals with

desirable characteristics under the new constraint that the signal's

spectrum be symmetric.
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Appendix A - Correlated Noise Model

N
L4

This discussion of the noise correlation qoefficients is taken
directly from Merchant®. The noise model assumed here consists of two
components: an incoherent component plus a coherent component, i.e.,

c

n, = “ki + 08 k= 1,2 (B-1)

where the superscript "i” denotes the incoherent component, and the

superscript “c” denotes the coherent component of the noise. The vari-

ances of the real and imaginary parts of the incoherent and coherent

2

components are Oi

and ocz, respectively, where

The incoherent noise component has the following covariance properties

- 11 11, 2
. Elxyy x5} = Elyyq vp5) =y 04" 844

11 1
11 Y25 } = 0.

i '..
Eix 21 Y13

} = E{x

where Py is the in-phase correlation coefficient of the incoherent

noise.
The coherent noise is assumed to te the same in each channel ex-
cept for a phase factor:

¢ _c -j¢

24 11 ¢° ¢
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) If the ratio of the coherent noise power to the total noise power is
b

oc2
v.‘ 02
X n
P, then the covariance matrix for the Gaussian density f(xl,yl,xz,yz)
" becomes
. [ 2 2, 2 2 . ]
' on 0 pici +oc cos¢c oc sin¢c
N 2 2
- - 0 c =0~ sin¢ p.0, +0° cos¢

n;,n, n c c i1 c c
: 2. 2 2 2
N pioi +ac cos¢c oc sin¢c on 0
X
: c 2 ind P, 2+U 2costb 0 0n2
L c 8 c i'i J c
so that the noise correlation coefficients used in Chapter 4 become
E{xlx }
p = 3 =r cos¢c + (l-r)oi
n
: E{xly2}
A= 7 =T sin¢c .
]
n

I1f the incoherent noise is uncorrelated between channels (i.e., Di = 0),

p and A can be considered as the real and imaginary components of a
-j¢c

"complex correlation coefficient,” Y = re
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APPENDIX B
Change in Correlation Properties

Due to Complex Multiplication

Consider two circularly symmetric complex process
nl = x1 + jy1
n2 = x2 + jy2

with correlations

2
E{x,x,} = Ely,y,} = oo

2

E{x,y,} = =E{x,y,} = Ao" .

172 271

If these processes are each multiplied by complex numbers of unit
norm, it is desired to find the new correlation properties. Let
u, + jv1 = (a + jb)(x1 + jyl) - ax; - by, + j(bxl + ayl)

u, + jv, = (c + jd)(x2 + jyz) = cx, = dy, + j(dx2 + cyz)

where (a + jb) and (c + jd) represent arbitrary complex numbers of unit

normn. Then
E{uluz} = E{(ax1 - byl)(cx2 - dyz)}
- E{acxlx2 + bdy,y, = adx;y, = bcylxz}

= [(ac + bd)p + (bc = ad)l]o2 .

5. X
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Similarly,

E{vlvz} = [(ac + bd)p + (bec - ad)A]o2

[(ad ~ be)p + (ac + bd)A]o>

E{ulvz}
Elvyu,} = = [(ad - be)p + (ac + bd)A Jol

E{ulvl} = E{ﬁzvz} =0 .

Two special cases are worthy of consideration. First, if both
processes ny and n, are multiplied by the same number, then a = ¢ and

b = d, so that

2

E{u,u,} = E{vlvz} = (a2 + b2)902 = po

142

. 2 2 2 2
E{ulvz} ~E{V1u2} = (a° + b )Aro Ao

where az + bz = c2 + dz = ] via the assumption of unit norm multipliers.

Hence if each process is multiplied by the same complex number, the
correlation properties do not change.
Another special case i1s that in which only one channel is multiplied

by a complex number, e.g., a+ jb=1 (a =1, b= 0). 1In this case

2

E{“I“Z} E{vlvz} (cp = dA)o

E{u,v,} = E{vju,} = (dp + cA)o” . sl

It is noted that the general case can always be broken down into

consecutive ap)lication of the two special cases (i.e., let c + jd =

(a + jb)(e + jf)).
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APPENDIX C

Fortran Source Code for Phase Bias of Real-Envelope Signals

This program calculates the phase bias for real envelope
signals as per pp. 54~55 of this thesis (Hatlestad, J.D.,
"Phase Comparison Time Delay Estimation Using Wideband
Signals™ The Pennsylvania State University, December,
1985).

XA
N

8

The input parameters are as follows:

"time bandwidth product™ (FBTEND) =~ This parameter is
the time bandwidth product of the signal. Since
the signal i{s assumed to have a real envelope the
bandwidth used to calculate this must be equal to
TWICE the maximum modulation frequency.

ahove note for "time bandwidth product.”

"ratio of time difference to modulation period”
(FBDELT) =- This parameter is the ratio of the
maximum time difference to be estimated to the
modulation period of the signal (l1/fmax).

See page 55 of thesis.

"ratio of sampling frequency to bandwidth™ (FSRAT) =~
Must be greater than or equal to one.

"input signal to noise ratio” (SNR) =-- Signal to noise

*
*
*
*
*
*
*
*
*
*
*
*
*
* .
* “ratio of bandwidth to carrier frequency”™ (BWRAT) == See
L J
*
*
*
*
*
*
*
*
*
L
*®
* ratio 1ia dB.

*

*

ARRARERRRRARRARRRARARAARRARR AR R AR h bRk rrhdhhhen

’
%y
0

COMPLEX SUMI,SUMJ,DSUM
PI = 4.0%ATAN(1.0)

AN
"’l"‘" ¢
A

c
C Query user for signal parameters X
WRITE(6,10) ]
10 FORMAT(S§,” Enter time-bandwidth product of signal: ~) R
READ(5,15) FBTEND SO
15 FORMAT(F20.10)
FBTEND = FBTEND/2.0
WRITE(6,20)
20 FORMAT(S,” Enter ratio of bandwidth to carrier
& frequency: °
READ(5,15) BWRAT
BWRAT = BWRAT/2.0
WRITE(6,30)
30 FORMAT(S$,” Enter ratio of time difference to modulation
& period ) : N
READ(5,15) FBDELT D

(AR AL A A
o L ]
1,

RS
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WRITE(6,40)
40 FORMAT(S$,” Enter ratio of sampling frequency to
& bandwidth: ~°)
READ(5,15) PSRAT
WRITE(6,50)
50 PORMAT(S$,” Enter input signal-to-noise ratio (dB): °)
READ(5,15) SNR

o
C Convert SNR from dB to decimal
SNR = 10.0**( SNR/10.0 )
c
C Conmpute auxiliary variables (in radians)
NP = NINT( FBTEND*2,0%FSRAT )
FOTEND = FBTEND/BWRAT ! Product of carrier and
o] signal duration
PBTINCR = FBTEND/FLOAT(NP) ! Product of bandwidth and

time increment
FOTINCR = FOTEND/FLOAT(NP) ! Product of carrier and

ti=e increment

DELS = SQRT(6.0/SNR)/(2.0*PI*FOTEND) ! Expected error

c

c

c

C for s estimate
S = 1.0 + DELS '

c

c

Convert arguments of trigonometric functions to radians
FBTINCR = 2.0%#PI*FBTINCR
FOTINCR = 2.0%*PI*FOTINCR
FBDELT = 2.0*PI*FBDELT

C Intialize sums
SUMI = CMPLX(0.0,0.0)
SUMJ = CMPLX(0.0,0.0)

c
C Compute first sum
DO I=O0,NP
COSCOSI-COS( I*FBTINCR )*COS( S*I*FBTINCR )
SUMI=SUMI + COSCOSI*CEXP( CMPLX(0.0,DELS*I*FOTINCR) )
ENDDO
c
C Compute second sum
DO J=0,NP
COSC0SJ=COS( J*FBTINCR )*COS( S*(J*FBTINCR+FBDELT) )
SUHJ-SUHJ+COSCOSJ*CEXP( CMPLX(0.0,-DELS*J*FOTINCR) )
ENDDO
c

C Multiply sums
DSUM = SUMI®*SUMJ
c i
€ Compute phase dias
PHIB = ATAN( AIMAG(DSUM)/REAL(DSUM) )
PHIB = PHIB*180.0/P1
WRITE(6,60) PHIB
60 FORMAT(‘ PEIB (DEGREES) = “,E10.4)
c
STOP
END
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